

University of International Business and Economics International Summer School

MAT 220 Linear Algebra and Differential Equations

Term: July 2 – August 2, 2018 Instructor: Colin McLarty

Home Institution: Case Western Reserve University

Email: colin.mclarty@case.edu

Class Hours: Monday through Thursday, 120 minutes each day

Office Hours: TBD

Discussion Session: 2 hours each week

Total Contact Hours: 66 contact hours (45 minutes each)

Credit: 4 units

Course Description:

We present core topics in elementary differential equations and related concepts and methods of elementary linear algebra, with emphasis on real-world applications: First-Order and Second Differential Equations; Exact and separable Equations; Mathematical Models and Numerical Methods; Linear Systems and Matrices; Vector Spaces; Higher-Order Linear Differential Equations. The course has a prerequisite of one year of calculus (differential and integral calculus in one variable) and will require use of a laptop computer.

The textbook is supplemented by various course material and video lectures by the author, described at his web page http://math.mit.edu/~gs/dela/

Course Goals:

A student who satisfactorily completes this course will be able to:

- ♦ understand what a differential equation is, especially linear differential equations;
- understand how differential equations are used to model real life phenomena;
- → relate the theory to graphical and numerical methods of solution;
- ψ understand the basics of linear algebra;
- ♦ relate linear algebra to techniques for solving linear differential equations.

Required Textbook:

Gilbert Strang: Differential Equations and Linear Algebra, ISBN-10: 0980232791 ISBN-13: 978-0980232790.

Grading Policy:

Grading will be determined by a combination of class attendance and participation, and the results of your exams. Attendance and Participation 20%. In class short assignments 20%. Midterm Exam, 20%. Final Exam 40%.

Grading Scale:

Assignments and examinations will be graded according to the following grade scale:

Α	90-100	C+	72-74
A-	85-89	С	68-71
B+	82-84	C-	64-67
В	78-81	D	60-63
B-	75-77	F	below 60

Class Rules:

Students are expected to come to lecture having read the material assigned for the day, and prepared to engage in active discussion about those ideas.

Attendance Policy:

Summer school is very intense and to be successful, students need to attend every class. Occasionally, due to illness or other unavoidable circumstance, a student may need to miss a class. UIBE policy requires a medical certificate to be excused. Any unexcused absence may affect the student's grade. Moreover, UIBE policy is that a student who has more than 1/3 (6 times) of the class in unexcused absences will fail the course.

Course Schedule:

Week One:

Chapter One.

First order differential equations.

Four examples, linear versus nonlinear, exponentials and sinusoids, the logistic equation, separable and exact equations.

Begin Chapter Two.

Examples of second order equations.

Week Two:

Chapter Two.

Second order differential equations.

Constant coefficients, forced oscillations and exponential response.

Electrical network and mechanical systems.

General results on solving second order equations.

Midterm Examination 20%.

Week Three:

Chapter Three.

Graphical and numerical solutions.

Nonlinear equations.

Sources, sinks, and saddles.

Linearization and stability.

Basic Euler Methods.

Begin Chapter Four.

Week Four:

Chapters Four and parts of Five.

Linear equations and vector spaces.

Solving linear equations by elimination.

Matrix multiplication and inverse.

Column and row space of a matrix, and null-space and image space of a linear transform.

Independence, basis, and dimension.

Introduction to eigenvalues of a matrix.

Week Five:

Chapter Six.

Systems of linear differential equations.

Linear systems y'=Ay.

The exponential of a matrix.

Second order systems.

Final Examination 40%.