

University of International Business and Economics International Summer School

MAT 110 Calculus I

Term: September 20th – December 10th, 2021 Instructor: Shen Fan Home Institution: China University of Petroleum Email: fans@cup.edu.cn Class Hours: 2 days per week, 120 minutes each teaching day (2,400 minutes in total) Office hours: to be announced Discussion sessions: each Wednesday, time TBD

Total Contact Hours: 64 contact hours (45 minutes each, 48 hours in total) Credit: 4 units

Course Description:

In this course we will describe some basic ideas and techniques that lie at the foundation of all pure and applied mathematics. Major topics include: limits of functions (numerically, graphically, and algebraically); continuity and differentiability of functions; computing derivatives using the difference quotient, power rule, sum and difference rules, product and quotient rules, and the chain rule; employing derivatives to draw detailed graphs of functions and solve applications from business, science, and engineering; trigonometric, exponential, and logarithmic functions and their derivatives, graphs, and use in applications; antidifferentiation, finding both definite and indefinite integrals; applying integrals in real-world applications; and inverse functions, exponential, logarithmic, and inverse trigonometric functions and their derivatives.

Course Goals:

A student who satisfactorily completes this course should be able to:

- 1. Evaluate limits of functions, and describe the continuity/discontinuity of a function.
- 2. Calculate derivatives of functions using rules and using the definition of the derivative.
- 3. Use linearization to make approximations of functions.

4. Relate features of a function (increasing/decreasing, extrema, concavity, infection points) to its derivatives.

- 5. Solve application problems using differential calculus.
- 6. Estimate definite integrals using Riemann sums, calculate definite integrals, both using evaluating the limit of Riemann sums and using the fundamental theorem of calculus.
- 7. Anti-differentiate functions, using the method of substitution when appropriate.
- 8. Solve application problems using integrals.
- 9. Calculate derivatives of inverse functions.

Required Text:

Stewart, James. Single Variable Calculus: 8th edition with ISBN 978-1-285-74062-1

Prerequisites:

Students are expected to be familiar with basic algebra and trigonometry studied in high school.

Attendance:

Students are expected to be present at all class meetings and examinations.

Grading Policy:

There will be one midterm and a final exam in this class. All exams will be closed-book. No notes, calculators, or other electronic devices will be allowed.

The course grades will be calculated based on the following percentages:

- Homework: 30%
- Midterm: 30%
- Final Exam: 40%

The final exam will be cumulative. There will be no make-up exams.

Grading Scale:

Assignments and examinations will be graded according to the following grade scale:

A	90-100	C+	72-74
A-	85-89	С	68-71
B+	82-84	C-	64-67
В	78-81	D	60-63
B-	75-77	F	below 60

It should be noted that in many US colleges **C**- is not a passing grade if the course is required for a major.

Class Rules:

All academic work should be done with the high level of honesty and integrity. Academic misconduct of any kind may result in a grade penalty or the assignment of a failing grade.

Course Schedule (tentative):

WEEK	Topics	Homework
1	1.1 Four Ways to Represent a Function	2, 7, 27, 31, 33, 41
	1.2 Mathematical Models: A Catalog of Essential Functions	2, 5, 11, 13

	1.3 New Functions from Old Functions	6, 13, 15, 23, 31, 35
	1.4 The Tangent and Velocity Problems	1, 5
2	1.5 The Limit of a Function	5, 11, 15, 30, 33, 38
	1.6 Calculating Limits Using the Limit Laws	5, 6, 11, 15, 17, 22
	1.8 Continuity	12, 19, 35, 37, 52
	2.1 Derivatives and Rates of Change	6, 13, 21, 33, 35
4	2.2 The Derivative as a Function	3, 21, 23, 25, 60
	2.3 Differentiation Formulas	2, 7, 9, 13, 15, 17, 21, 25, 30
	2.4 Derivatives of Trigonometric Functions	2, 5, 9, 13, 15, 23
	2.5 The Chain Rule	7, 11, 15, 19, 25, 29, 53
5	2.6 Implicit Differentiation	7, 11, 15, 19, 35
	2.7 Rates of Change in the Natural and Social Sciences	5, 9
	2.8 Related Rates	1, 5, 9, 15
	2.9 Linear Approximations and Differentials	3, 7, 9, 11
6	3.1 Maximum and Minimum Values	15, 19, 21, 45
	3.2 The Mean Value Theorem	5, 7, 11, 21
	3.3 How Derivatives Affect the Shape of a Graph	5, 7, 9, 15, 33
	3.4 Limits at Infinity; Horizontal Asymptotes	7, 11, 15, 19, 23, 27, 31, 35
7	3.5 Summary of Curve Sketching	3, 7, 11, 15, 49
	3.7 Optimization Problems	3, 7, 13, 15, 21
	Midterm	
8	3.9 Antiderivatives	5, 11, 17, 21, 25, 31

	4.1 Areas and Distances	3, 5, 7, 17, 25
	4.2 The Definite Integral	3, 7, 9, 17, 19
	4.3 The Fundamental Theorem of Calculus	5, 7, 11, 15, 17, 19, 23, 39
9	4.4 Indefinite Integrals and the Net Change Theorem	5, 9, 13, 15, 25, 27, 39
	4.5 The Substitution Rule	5, 7, 13, 17, 25, 37
	5.1 Area Between Curves	1, 13, 19, 27
	5.2 Volumes	1, 5, 11
10	6.1 Inverse Functions	5, 7, 9, 11, 17, 23, 41
	6.2 Exponential Functions and Their Derivatives	3, 7, 11, 17, 23, 29, 41
11	6.3 Logarithmic Functions	7, 11, 15, 31, 39, 47, 53, 59
	6.4 Derivatives of Logarithmic Functions	3, 5, 7, 9, 15, 17
	6.5 Exponential Growth and Decay	1, 5, 9, 15, 21
12	6.6 Inverse Trigonometric Functions	1, 5, 9, 23, 33, 61, 65
	6.8 Indeterminate Forms and L'Hospital's Rule	9, 13, 17, 21, 25, 47, 55, 61
	Review & Final Exam	